Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    KoalaNames.com
    What’s in a name? More than you think.

    Your name isn’t just a label – it’s a vibe, a map, a story written in stars and numbers.
    At KoalaNames.com, we’ve cracked the code behind 17,000+ names to uncover the magic hiding in yours.

    ✨ Want to know what your name really says about you? You’ll get:

    🔮 Deep meaning and cultural roots
    ♈️ Zodiac-powered personality insights
    🔢 Your life path number (and what it means for your future)
    🌈 Daily affirmations based on your name’s unique energy

    Or flip the script – create a name from scratch using our wild Name Generator.
    Filter by star sign, numerology, origin, elements, and more. Go as woo-woo or chill as you like.

    💥 Ready to unlock your name’s power?

    👉 Tap in now at KoalaNames.com

    Applied Machine Learning: Ensemble Learning (2022)

    Posted By: lucky_aut
    Applied Machine Learning: Ensemble Learning (2022)

    Applied Machine Learning: Ensemble Learning (2022)
    Duration: 2h 25m 43s | .MP4 1280x720, 30 fps(r) | AAC, 48000 Hz, 2ch | 356 MB
    Genre: eLearning | Language: English


    Do you want to grow your skills as a machine learning practitioner, but don’t know where to begin? You don’t need any formal training in data science to start working toward your goal. In this course, instructor Derek Jedamski shows you how to harness messy data, find signal in it, and build models that make powerful predictions with ensemble learners, one of the most common classes of machine learning algorithms.<br><br>Review the basics of the machine learning pipeline to find out where ensemble learners sit within it. Learn about the underlying theory that drives ensemble learners, covering examples of ensemble learning in Python and then implementing models of your own. Explore concepts like boosting, bagging, and stacking, and how to use each and when. Get the tools you need to ramp up your predicting power and advance your machine learning skills today.
    More Info

    Please check out others courses in your favourite language and bookmark them
    English - German - Spanish - French - Italian
    Portuguese