Tags
Language
Tags
March 2024
Su Mo Tu We Th Fr Sa
25 26 27 28 29 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6

Coursera - Game Theory

Posted By: ksenya.b
Coursera - Game Theory

Coursera - Game Theory
MP4 | 960 x 540 (1.778) @ 29.970 fps + PDFs | Language: English | 778 MB
Genre: Computer Science: Theory & Artificial Intelligence / Economics & Finance

The course covers the basics: representing games and strategies, the extensive form (which computer scientists call game trees), repeated and stochastic games, coalitional games, and Bayesian games (modeling things like auctions).

About the Course

Popularized by movies such as "A Beautiful Mind", game theory is the mathematical modeling of strategic interaction among rational (and irrational) agents. Beyond what we call 'games' in common language, such as chess, poker, soccer, etc., it includes the modeling of conflict among nations, political campaigns, competition among firms, and trading behavior in markets such as the NYSE. How could you begin to model eBay, Google keyword auctions, and peer to peer file-sharing networks, without accounting for the incentives of the people using them? The course will provide the basics: representing games and strategies, the extensive form (which computer scientists call game trees), Bayesian games (modeling things like auctions), repeated and stochastic games, and more. We'll include a variety of examples including classic games and real-world applications.

Course Syllabus

Week 1. Introduction: Introduction, overview, uses of game theory, some applications and examples, and formal definitions of: the normal form, payoffs, strategies, pure strategy Nash equilibrium, dominated strategies.

Week 2. Mixed-strategy Nash equilibria: Definitions, examples, real-world evidence.

Week 3. Alternate solution concepts: iterative removal of strictly dominated strategies, minimax strategies and the minimax theorem for zero-sum game, correlated equilibria.

Week 4. Extensive-form games: Perfect information games: trees, players assigned to nodes, payoffs, backward Induction, subgame perfect equilibrium, introduction to imperfect-information games, mixed versus behavioral strategies.

Week 5. Repeated games: Repeated prisoners dilemma, finite and infinite repeated games, limited-average versus future-discounted reward, folk theorems, stochastic games and learning.

Week 6. Coalitional games: Transferable utility cooperative games, Shapley value, Core, applications.

Week 7. Bayesian games: General definitions, ex ante/interim Bayesian Nash equilibrium.

Screenshots (Click to enlarge):

Coursera - Game Theory



Coursera - Game Theory